

Economic efficient policies for ecological targets

David De Pue Jeroen Buysse

Three policy areas

- Generic policies
- License policies (targeted)
- Abatement

Critical Habitat Cell vs. Total Impact

- Deposition in critical habitat cell as indicator of significance
- Used in Flanders
- Significance_x = $\frac{Deposition_{x,y}}{Critical Load_y}$

- Indicator of total impact in whole nature area
- Correlates better with total damage costs
- Impact Score_x = $\sum_{y} \frac{Deposition_{x,y}}{Critical Load_{y}}$

Impact map

- Based on bigaussian dispersion modelling
- Maps the impact of hypothetical emission of 5000 kg NH₃-N/year
- Impact Score_x = $\sum_{y} \frac{Deposition_{x,y}}{Critical Load_{y}}$

Impact dependend on sensitivity of habitat (~CL)

Vrijbos Houthulst

Habitat 9120: Atlantic acidophilous beech forest (CL 15 kg N/ha.yr)

Zeverenbeekvallei Deinze

Habitat 9120: Atlantic acidophilous beech forest (CL 15 kg N/ha.yr)
Habitat 3150: Natural eutrophic lake (CL 30 kg N/ha.yr)
Habitat 6430: Hydrophilous tall herb fringe (CL 30 kg N/ha.yr)
Habitat 9160: Oak-hornbeam forest (CL 20 kg N/ha.yr)
Habitat 91EO: Alluvial forest (CL 29 kg N/ha.yr)

Impact map as tool for spatially differentiated pollution control

NER: nutriënten emission permits rechten

- permits for animal production
- tradable
- Change to concentration permit (Montgomery, 1972):
 - Emission x impactscore = needed permits
 - Farms decide themselves on relocation or on additional emission reduction measures

Ecological Economics 70 (2011) 2098-2104

Contents lists available at ScienceDirect

Ecological Economics

journal homepage: www.elsevier.com/locate/ecolecon

Analysis

Markets of concentration permits: The case of manure policy

GENT

Bart Van der Straeten ^{a,*}, Jeroen Buysse ^a, Stephan Nolte ^a, Ludwig Lauwers ^{a,b}, Dakerlia Claeys ^b, Guido Van Huylenbroeck ^a

Conclusion

- Impact map
 - Visualization of 'emission space' around protected area
 - Useful for spatially differentiated pollution control
- Impact score is better indicator for environmental damage than deposition in critical habitat cell
- Use of impact score treshold instead of critical habitat cell constraint is more efficient

Spatial optimization model - Principles

Farm A	Farm D	Forest CL: 15 kgN/ha.yr
Farm B	Grassland CL: 24 kN/ha.yr	Heathland CL: 11 kgN/ha.yr
Farm C	Farm E	Farm F

- 'Region' = Grid of 3x3 km²
- Collection of i farms and j
 nature areas
- Farm = number of animals
- Nature area: zone with characteristic critical load

Spatial optimization model - Principles

Objective function:

Maximize $\sum_i Animals_i$

- **s. t.** $Deposition_{i,j} * Animals_i <$
- $0.03 * CL_i$ (Individual contribution constraint)

 $\sum_{i} Deposition_{i,j} * Animals_i + 20 < 2 * CL_j$

(Total deposition constraint)

• $Deposition_{i,j} = \frac{em - (em * e^{-Distance(i,j) * 0.01207})}{\pi * Distance(i,j)^2} * 0.01$ em = 14 kgN/ha.yr Distance_{i,j} = from center to center

Farm A 1390	Farm D 841	Forest CL: 15 kgN/ha.yr Dep: 21,75 kgN/ha.yr
Farm B 1241	Grassland CL: 24 kN/ha.yr Dep: 22,86 kgN/ha.yr	Heathland CL: 11 kgN/ha.yr Dep: 21,97 kgN/ha.yr
Farm C 1390	Farm E 874	Farm F 617

Spatial Optimization

 Dispersion modelling: bigaussian with Pasquill-Gifford dispersion parameters (σ_y en σ_z):

$$C(x, y, z; h) = \frac{Q}{2\pi u \sigma_y \sigma_z} \exp\left[-\frac{1}{2}\left(\frac{y^2}{\sigma_y^2} + \frac{(z-h)^2}{\sigma_z^2}\right)\right]$$

- Meteo parameters wind direction, wind speed and atmospheric stability from KNMI station Eindhoven (2009-2015)
- Estimation of NH₃ emission per animal category and emission stage: EMEP guidebook (European emission inventory)
- Nature area (location, habitat type and critical load): map with natura 2000 areas and biological valuation map from www.geopunt.be
- Coordinates of industrial livestock farms (big pig and poultry farms) from www.geopunt.be

Spatial optimization: Reference Scenario 3% of CL in CHC

 $\begin{array}{ll} \mbox{Maximize } \sum_{i} Emission_{i} \\ \mbox{s. t.} & Deposition_{i,j} < 0.03 * CL_{j} \\ & \mbox{(Individual contribution constraint)} \\ & \sum_{i} Deposition_{i,j} * +20 < 2 * CL_{j} \\ & \sum_{i} 47542 \ kgNH \\ & \mbox{Average deposition} = 21.34 \frac{kgN}{ha. \ yr} \end{array}$

Scenario 2: no individual CL constraint, max. deposition from refererence scenario

Maximize $\sum_i Emission_i$

s.t. Average Deposition $< 21.34 \frac{kgN}{ha.yr}$ $\sum_{i} Deposition_{i,j} * +20 < 2 * CL_{j}$

 $\sum_{i}^{Emission_{i}} = \frac{1}{75676 kgNH3 N/yr}$

- 59% more emissions for same environmental quality (average deposition)
- Emissions spread over only 3 farms

What if we would use the total impact as constraint? Maximize $\sum_{i} Emission_{i}$

GENT

s. t. $Impact Score_i < Treshold$ (Individual contribution constraint) $\sum_i Deposition_{i,j} * +20 < 2 * CL_j$

Average Deposition < $21.34 \frac{kgN}{ha.yr}$ Scenario 3: ImpactScenario 4: Impact

 $\sum_{i} Emission_{i} =$ 74095 kgNH3 N/yr +56%5 farms

730

 $\sum_{i} Emission_{i} =$ $Emission_{i} =$ 68938 kgNH3 N/yr +45%9 farms

Scenario 5: Impact

Scenario 6: Impact

 $\sum_{i} Emission_{i} =$ 53207kgNH3 N/yr
+ 12%
22 farms

Jeroen Buysse

Faculty of Bioscience engineering – Department of Agricultural Economics

What if we would use the total impact as constraint?

Reference scenario $Deposition_{i,j} < 0.03 * \Sigma L_{47b42 kgNH3 N/yr}^{Emission_i =}$

Emission Distribution Reference Scenario

- +12 % emissions for same average deposition
- 6 farms with highest impact closed