Modelstudie naar de effecten van brongerichte landbouwmaatregelen op de stikstofdepositie in Natura 2000-gebieden

Effects of agricultural measures on deposition in Natura 2000 sites

26 april 2016, Hans Kros

N 2000 sites and N related policy questions

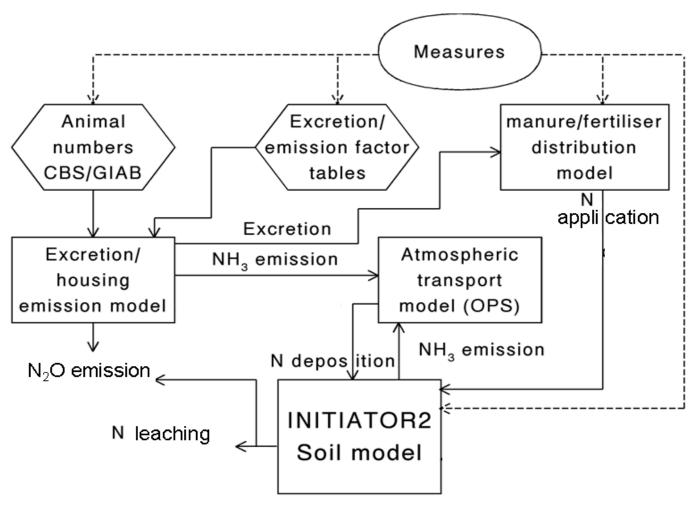
162 sites ~ 1.1 M ha (10% of land area) 118 N sensitive

NATURA 2000

- Which additional measures could be used to mitigate ammonia <u>emission</u> in spatial zones surrounding the Natura 2000 sites?
- What are most promising measures in relation to its associated <u>costs</u>?
- What are the growth potentials for farms in the neighbourhood of Nature 2000 sites?

Background/Aim

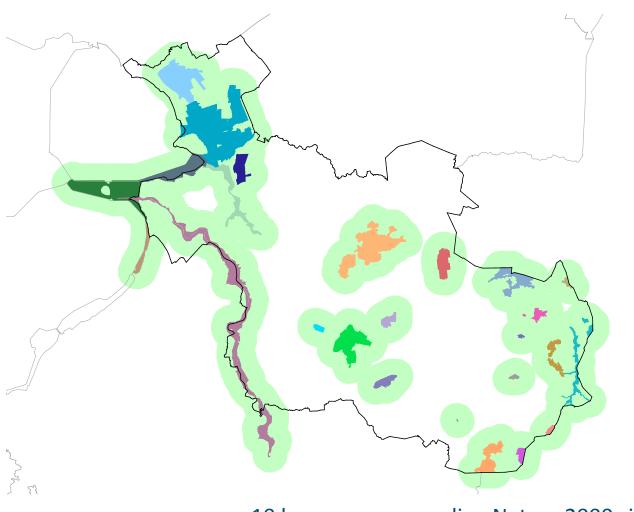
Background


- The provinces in the Netherlands are responsible for the protection plans for Natura 2000 sites
- To protect Natura 2000 sites against ammonia deposition and exceedances of CLN, regionally specific measures are needed

Aim

- To quantify the effects of a set of agricultural measures on the reduction in N deposition and CLN exceedance on Natura 2000 sites at landscape scale
- To identify the most cost effective measures on reducing NH₃ emission and the resulting N deposition on Natura 2000 sites

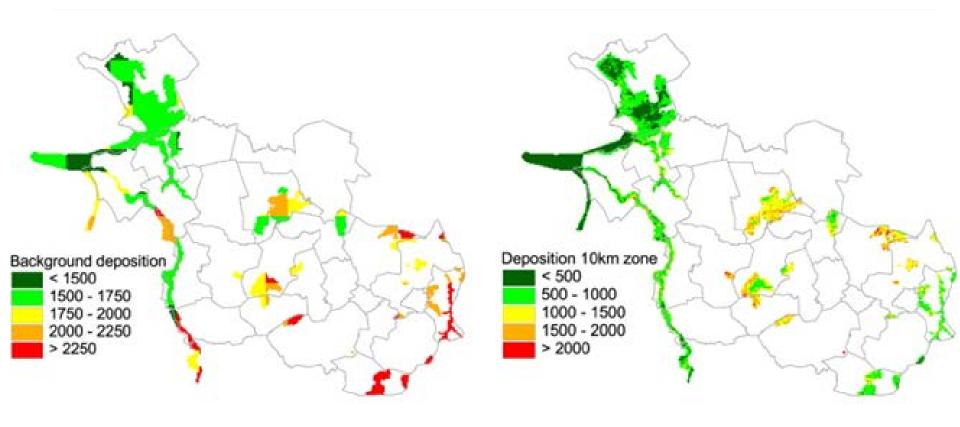
INITIATOR: A tool for integrated environmental analyse for agriculture



INITIATOR: tool for integrated environmental evaluations for agriculture

- Integration in INITIATOR implies:
 - Different N inputs and outputs
 - Interaction with other substances (GHG, C, P, BC, metals)
 - Different spatial scales (landscape, province, country)
- INITATIOR calculates:
 - Emission of ammonia to the atmosphere <-> NEC
 - N deposition in nature <-> critical N deposition

Spatial zones surrounding Natura 2000 sites



10 km zone surrounding Natura 2000 sites in the province Overijssel (light green)

Contribution of local emissions to total N deposition

Background

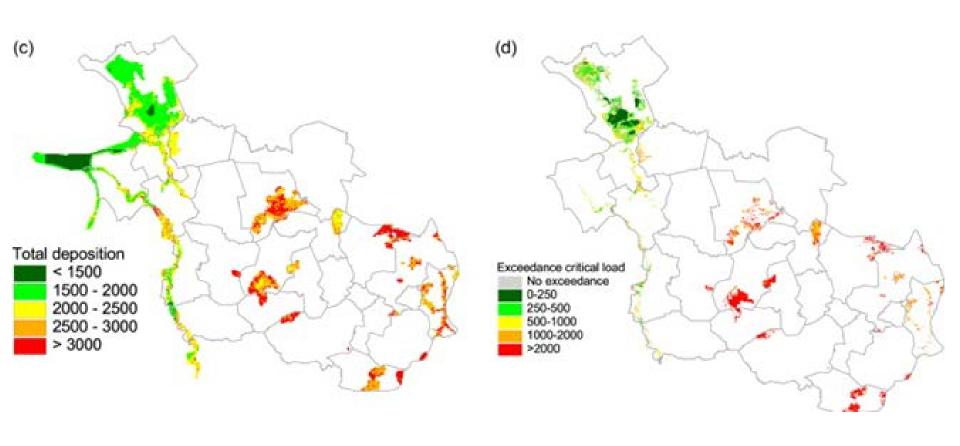
Contribution from the 10km zone

Origin N deposition in N2000 sites

Emission of N source	N Deposition (mol ha ⁻¹ yr ⁻¹)	Contribution (%)
NH ₃ from housing systems within the 10 km zone around Natura 2000 sites		
Cattle	254	11
Pigs and poultry	212	10
Other cattle	21	1
NH ₃ from land application	293 ^e	13
NH ₃ from outside the 10 km zone, but in NL ^a	495	22
NH ₃ from sources abroad ^b	368	16
NO _x from Overijssel ^c	90	4
NO _x from outside Overijssel ^d	506	23
Total	2240	100

^a Denotes to the NH₃ deposition due to agricultural sources outside the 10 km zone but within the Netherlands.

e 69% of this value is caused by manure application, 16% by grazing and 15% by fertilizer



b Denotes NH₃ emission from all sources (agricultural and non-agricultural) outside the Netherlands and all non-agricultural sources within the Netherlands.

^c Denotes NO_x emission from all sources in Overijssel

d Denotes NO_x emission from all sources outside Overijssel, including sources abroad

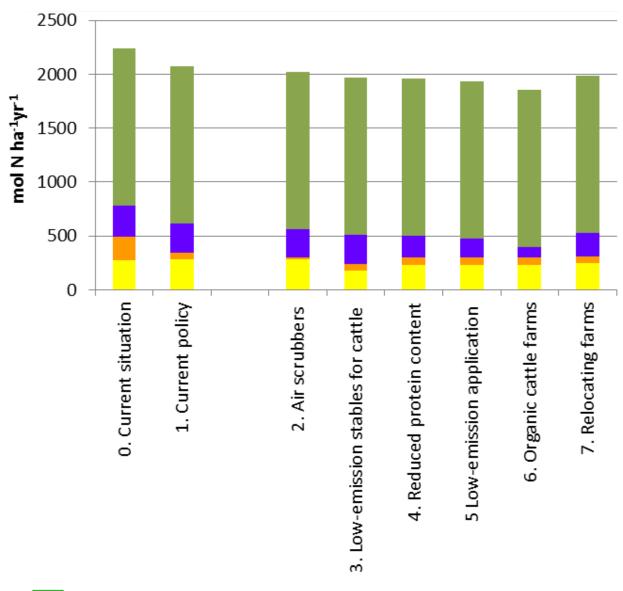
Total N deposition and CL exceedances

Total N deposition

Exceedances of critical N load

Evaluated measures

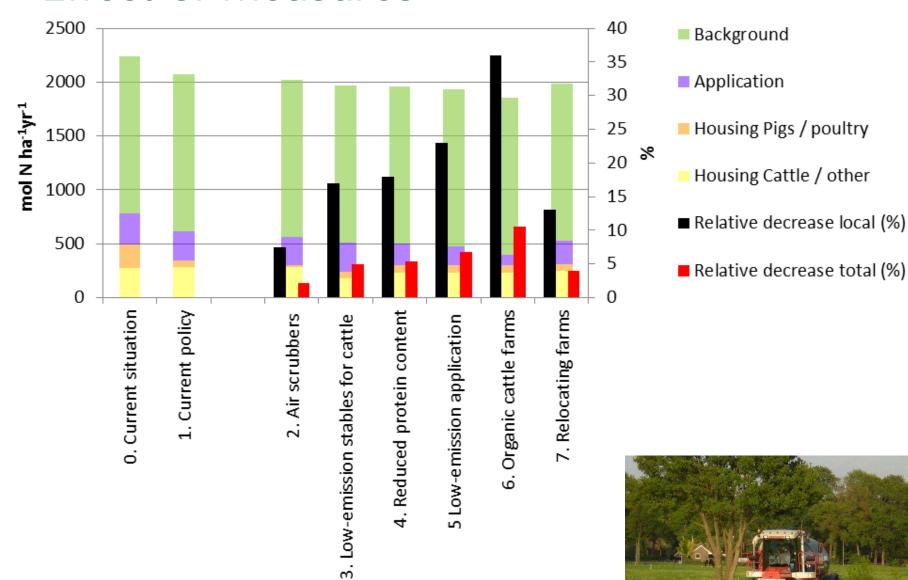
Measure	Description	Parameterisation	
1	Current policy	Full implementation of the low emission housing systems according to the National policy ^a and the European IPPC ^b for pigs and poultry farms. Furthermore, small farm (< 40 LSU ^c) were closed and the animals were transferred to larger farms (> 70 LSU).	
2	Air scrubbers	Reduction of NH ₃ emission from stables and manure storages by 70% compared to current practice stables. This measure is implemented for all farms within the 10 km zone.	
3	Low-emission stables for cattle	Reduction of NH ₃ emission from stables and manure storages by 40% compared to current stables.	
4	Reduced protein feed cattle Reduced N manure and fertilizer application	Reducing the N excretion factor by 18%. Reducing the mineral N content in manure by 25% Reducing N application on grassland to new N use requirements	
5	Low-emission application	Only sod incorporation	
6	Organic cattle farms	No fertilizer application for all cattle farms in the 10 km zone. This measure is combined with measure 4 and 5.	
7	Relocating farms	Implemented by a complete stop of all agricultural activities at these farms.	


^a The Ammonia and Livestock Farming Regulation for intensive animal husbandry (VROM, 2005)

^b The Integrated Pollution Prevention and Control – EC Directive 96/61/EC (EC, 1996).

^c Live Stock Units

Effect of measures



- Background
- Application
- Housing Pigs / poultry
- Housing Cattle / other

Effect of measures

Effect of measures on CLN exceedance and the average accumulated of CLN (AAE)

Measures	<u>Effect</u>	
	Area exceeding CLN (%)	AAE ¹⁾ (mol ha ⁻¹ yr ⁻¹) ²⁾
O. Current situation	93	1189
1. Current policy	93	1007
2. Air scrubbers	92	960 (-4.7)
3. Low-emission stables for cattle	91	908 (-9.8)
4. Reduced protein content	91	911 (-9.5)
5 Low-emission application	87	889 (-11.7)
6. Organic cattle farms	84	828 (-17.8)
7. Relocating farms	92	951 (-5.6)

¹⁾ Average Accumulated Exceedance

²⁾ Values in bracket denotes the relative change compared to the current situation (in %)

Cost efficiency of ammonia measures

Measures	Cost efficiency (million € per mol reduction in NH ₃ deposition per ha)
2. Air scrubbers	1.22
3. Low-emission stables for cattle	0.34
4. Reduced protein content	0.19
5. Low-emission application	0.07
6. Organic cattle farms	0.27
7. Relocating farms	8.28

Conclusions

- For the province of Overijssel only 35% of the N deposition in the Natura 2000 sites was due to agricultural NH₃ emissions from the 10 km zone around the Natura 2000 sites
- Evaluated measures at landscape scale have a rather small contribution to protecting Natura 2000 areas against elevated N deposition levels
- Organic farming has the largest effect; Low-emission application the highest cost efficiency
- A reduction of less than 20% in total N deposition could be achieved by all these measures
- Do no focus on the CL exceedance as such, but gap closure leading to a more balanced approach

Thank you

Thanks to:

Jan Cees Voogd

Edo Gies

Further reading:

- http://dx.doi.org/10.101
 6/j.envsci.2012.09.005
- http://library.wur.nl/WebQuery/wurpubs/418953

