Spatial and temporal extent of the effectiveness of wildlife passages on metapopulations

Maud Segal, Caroline Geeraerts, Joachim Mergeay

1. Introduction

- ∗ Increased habitat fragmentation
 → threat to biodiversity
- European Commission in action: construction of wildlife passages
- How effective are wildlife passages really?

1. Introduction

 Unrealistically long studies on wild populations to get results on efficacy of ecoducts

- * Use of simulation softwares, e.g. MARLIN®
 - \rightarrow possibility to set realistic parameters
 - \rightarrow fast results
 - \rightarrow tool for analysing efficacy of ecoducts

* MARLIN[®]: create and analyse spatially explicit population genetic simulations.

* Simulation of 3 landscape configurations:

BARRIER

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100
101	102	103	104	105	106	107	108	109	110
						_			_

PASSAGE

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100
101	102	103	104	105	106	107	108	109	110

CONTINUOUS

	10	9	8	7	6	5	4	3	2	1
	20	19	18	17	16	15	14	13	12	11
nortn	30	29	28	27	26	25	24	23	22	21
	40	39	38	37	36	35	34	33	32	31
	50	49	48	47	46	45	44	43	42	41
	60	59	58	57	56	55	54	53	52	51
	70	69	68	67	66	65	64	63	62	61
south	80	79	78	77	76	75	74	73	72	71
Joan	90	89	88	87	86	85	84	83	82	81
	100	99	98	97	96	95	94	93	92	91
3/20	110	109	108	107	106	105	104	103	102	101

- * Characteristics of simulation configuration:
 - \rightarrow neutral genetic markers
 - ightarrow Kimura stepping stone model of population connectivity
 - ightarrow 1.6 migrants per generation to the next subpop.
 - \rightarrow CONT = 1100 N_e, BARR = 1000 N_e, PASS = 1010 N_e
 - \rightarrow random genotypes
 - \rightarrow 50 loci (two alleles) per indv.
 - \rightarrow overall standardized genetic variance F_{st} = c. 0.25
 - \rightarrow pairwise F_{st} among neighbour subpop = c. 0.05 0.10

- * 10 runs per landscape configuration
- * Output at 20, 100 and 1000 generations
- * Statistical analyses:
 - 1. AMOVA among clusters (north VS south) = F_{ct}

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100
101	102	103	104	105	106	107	108	109	110

- * 10 runs per landscape configuration
- * Output at 20, 100 and 1000 generations
- * Statistical analyses:
 - 1. AMOVA among clusters (north VS south) = F_{ct}
 - 2. AMOVA within clusters = F_{sc}

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100
101	102	103	104	105	106	107	108	109	110

- * 10 runs per landscape configuration
- * Output at 20, 100 and 1000 generations
- * Statistical analyses:
 - 1. AMOVA among clusters (north VS south) = F_{ct}

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100
101	102	103	104	105	106	107	108	109	110

- * 10 runs per landscape configuration
- * Output at 20, 100 and 1000 generations
- * Statistical analyses:
 - 1. AMOVA among clusters (north VS south) = F_{ct}
 - 2. AMOVA within clusters = F_{sc}
 - Pairwise genetic differentiation
 « D_{iost} » at distance 1, 3, 5 and 7

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100
101	102	103	104	105	106	107	108	109	110

- * 10 runs per landscape configuration
- * Output at 20, 100 and 1000 generations
- * Statistical analyses:
 - 1. AMOVA among clusters (north VS south) = F_{ct}
 - 2. AMOVA within clusters = F_{sc}
 - Pairwise genetic differentiation
 « D_{jost} » at distance 1, 3, 5 and 7
 - →ANOVA on each measure of genetic differentiation and Post-hoc Tukey's HSD tests

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100
101	102	103	104	105	106	107	108	109	110

* Manual to interpretation of results:

Ecoduct very efficient **Ecoduct efficient Ecoduct** inefficient *** genetische differentiatie genetische differentiatie genetische differentiatie 0.18 0.19 0.20 0.21 0.21 0.21 0.20 0.20 0.19 0.19 0.18 0.18 PASS CONT BARR BARR PASS CONT PASS CONT BARR

* 20 generations

Genetic differentiation (F_{sc} and F_{ct})

F_{ct}

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
31	32	33		33	50	5	50	35	00
61	62	63	64	65	66	67	68	69	70
61 71	62 72	63 73	64 74	65 75	66 76	67 77	68 78	69 79	70 80
61 71 81	62 72 82	63 73 83	64 74 84	65 75 85	66 76 86	67 77 87	68 78 88	69 79 89	70 80 90
61 71 81 91	62 72 82 92	63 73 83 93	64 74 84 94	65 75 85 95	66 76 86 96	67 77 87 97	68 78 88 98	69 79 89 99	70 80 90 100

BARR

CONT

PASS

=

CONT

=

0

PASS

PASS

BARR

* 20 generations

Genetic differentiation (D_{jost})

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100
101	102	103	104	105	106	107	108	109	110

* 20 generations

Genetic differentiation (D_{jost})

0

PASS

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
	02	93	94	95	96	97	98	99	100
91	92	- 33	34						

0

CONT

PASS

PASS

* 100 generations

Genetic differentiation (D_{jost})

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100
101	102	103	104	105	106	107	108	109	110

* 100 generations

Genetic differentiation (F_{sc} and F_{ct})

F_{ct}

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100
101	102	102	104	105	106	107	100	100	110

13/20

0

0

CONT

PASS

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100
101	102	103	104	105	106	107	108	109	110

* 1000 generations

Genetic differentiation (F_{sc} and F_{ct})

11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100
101	102	103	104	105	106	107	108	109	110

 F_{sc}

F_{ct}

4. Discussion

- Effect of ecoduct almost negligible, except for local populations close to the ecoduct
- caveats of simulations
- * How useful is parameter space?

4. Discussion

* Consequences for green infrastructure policy:

- → current ecoducts: 50 m wide, 1 per 50km
 - = 1/1000th of the lenght of the barrier
 - \approx 9 hours per year open

De Munt (E19)

Sawaya, M. A., S. Kalinowski, and A. P. Clevenger 2014. Genetic connectivity for two bear species at wildlife crossing structures in Banff National Park. Proceedings of the Royal Society B 281:201131705

5. Conclusion

- Wildlife passages should only be constructed when they can directly connect subpopulations that are close to each other
- * ecoduct has a very limited spatial effect: a passage is required every other « cell »
 - → e.g. for medium-sized mammals: every 10 km for amphibians or reptiles: every 1-2 km for the smallest species: every few 100 m

5. Conclusion

- Final remarks: anthropogenic misconceptions on ecoducts
 - → green connection does not entice functionality, and vice versa!
 - → organisms do not actively search for ecological connections!

Thank you for your attention!

ANOVA	D1	D3	D5	D7	F _{sc}	F _{ct}
GEN20	0.0717!	0.2640	0.3544	0.0579	0.1070	0.0535!
GEN100	<0.0001*	0.1250	0.7540	0.0466*	<0.0001*	<0.0001
GEN1000	<0.0001*	0.0059*	0.0082*	0.0016*	<0.0001*	<0.0001*
Post-hoc pairwise effect						
GEN20						
CONT-BARR	0.0294*!	NA	NA	0.0345	NA	0.0593
PASS-BARR	0.3651	NA	NA	0.9424	NA	0.9110
PASS-CONT	0.5688	NA	NA	0.0660	NA	0.0659
GEN100						
CONT-BARR	<0.0001*	NA	NA	0.8226	0.0000*	<0.0001*
PASS-BARR	0.0012*	NA	NA	0.1542	0.9996	0.7645
PASS-CONT	0.0537*	NA	NA	0.0467*	<0.0001*	<0.0001*
GEN1000						
CONT-BARR	<0.0001*	0.0069	0.0316	0.0118	0.0019	<0.0001
PASS-BARR	0.0010*	0.8004	0.6275	0.7564	0.9971	0.1575
PASS-CONT	0.0046*	0.0313*	0.0075*	0.0020*	0.0016*	<0.0001*