Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms

Steven Declerck NECOV lustrum meeting 8 April 2014

Spatial dynamics in community ecology

Metacommunities:

local communities that are linked with each other through **dispersal** of multiple potentially interacting species

> Leibold et al. 2004 Holyoak et al. 2005

Major community perspectives

•Niche perspective: compositional variation among communities is structured mainly by the interaction of species' niches with the environment and the composition of a community is shaped by the process of **species sorting** (Leibold et al. 2004).

•Neutral perspective: Species and habitat patches can be considered equal and variation in the compositon among communities is generated by neutral dynamics, such as drift, local stochastic extinctions, immigration and emigration (Hubbell 2001).

Neutral perspective

•Dispersal limitation allows spatial patterns in metacommunities to be generated by drift and stochastic colonisation

• Dispersal homogenizes metacommunities

DISPERSAL

Limiting

Non-limiting

Massively

Niche perspective

Neutral perspective

•Dispersal limitation allows spatial patterns in metacommunities to be generated by drift and stochastic colonisation

• Dispersal homogenizes metacommunities

DISPERSAL

Limiting

Non-limiting

Niche perspective

•Efficient species sorting, leading to a **good** match between community composition and the environment

Massively

Neutral perspective

•Dispersal limitation allows spatial patterns in metacommunities to be generated by drift and stochastic colonisation

• Dispersal homogenizes metacommunities

DISPERSAL

Limiting

Niche perspective

Dispersal limitation constrains species sorting, leading to a poor match between community composition and the environment
Predominance neutral patterns

Non-limiting

•Efficient species sorting, leading to a **good** match between community composition and the environment

Massively

Neutral perspective

•Dispersal limitation allows spatial patterns in metacommunities to be generated by drift and stochastic colonisation

• Dispersal homogenizes metacommunities

DISPERSAL

Limiting

Niche perspective

Dispersal limitation constrains species sorting, leading to a poor match between community composition and the environment
Predominance neutral patterns

Non-limiting

•Efficient species sorting, leading to a **good** match between community composition and the environment

Massively

•Communities are quantitatively affected by dispersal from source into sink habitats, leading to a **poor** match between community composition and the environment

The method of variation partitioning

Use of variation partitioning results to infer metacommunity processes

Metacommunity structure will depend on the interaction of organism traits and landscape connectivity

(1) Prediction for passive dispersers: signature of dispersal limitation will increase with body size

Larger propagules > lower dispersal distances

Smaller populations > production of lower amounts of propagules > more prone to local extinction Debain et al. 2003 Hillebrand 2001 Finlay et al. 2002 Shurin et al. 2009 Ptacnik et al. 2010

Characteristics of the organism

(1) Prediction for passive dispersers:

signature of dispersal limitation will increase with body size

(2) Prediction for active dispersers:

signature of dispersal limitation will decrease with body size

Characteristics of the organism

(1) Prediction for passive dispersers:

signature of dispersal limitation will increase with body size

(2) Prediction for active dispersers:

signature of dispersal limitation will decrease with body size

(3) Active dispersers more or less dispersal-limited than passive dispersers?

- >Higher dispersal abilities (?)
- Active habitat choice
- ➢But smaller populations

12 different organism groups

Tom De Bie

Metacommunity structure and dispersal mode

Variation partitioning on RDA-models: environment versus space

Metacommunity structure and dispersal mode

Detection of influential spatial scales

(MEM-analysis)

Detection of influential spatial scales

Conclusions:

We observed strong and consistent relationships between key traits of organism groups and the structure of their metacommunities.

- + passive dispersers: dispersal limitation increases with body size increasing strength of spatial patterns decreasing spatial scale at which patterns are manifested
- + active dispersers:
 - flying insects tend to be less dispersal limited than passive dispersers of similar body size

amphibians and fish: small-scale spatial patterns suggest strong reliance on local connectivity patterns

Conclusions:

With increasing spatial scale, beta diversity tends to shift from being environmentally controlled to being dispersal-controlled

Our results show that the scale at which this shift occurs depends on organism traits, such as body size and dispersal mode

Incorporation of traits can therefore

-provide a more predictive framework for metacommunity ecology

-help steer management decisions

(e.g., identification of groups vulnerable to dispersal limitation)

L. Vanhecke,⁵ K. Van der Gucht,⁶ J. Van Wichelen,⁶ W. Vyverman⁶ and S. A. J. Declerck^{1,7}

ing than small-bodied groups suggesting an increasing impact of dispersal limitation with increasing body size. Metacommunities of organisms with the ability to fly (i.e. insect groups) showed a weaker imprint of dispersal limitation than passive dispersers with similar body size. In contrast, dispersal movements of vertebrate groups (fish and amphibians) seemed to be mainly confined to local connectivity patterns. Our

Metacommunities of macrophytes and zooplankton in ditch systems of The Netherlands

NWO 'Biodiversiteit werkt'-project

Sven Teurlincx

Study of link between spatial community patterning and dispersal traits in macrophytes

Sven Teurlincx

Dr. Merel Soons

The MANSCAPE consortium

Co-ordinator Royal Belgian Institute of Natural Sciences

K.U.Leuven

Université de Namur

Universiteit Gent

Université de Liège

INBO

Plantentuin Meise

